
Source-Tree Routing in Wireless Networks�

J.J. GARCIA-LUNA-ACEVES
Computer Engineering Department

Baskin School of Engineering
University of California

Santa Cruz, CA 95064, USA
jj@cse.ucsc.edu

MARCELO SPOHN
Nokia Wireless Routers

Mountain View, CA 94041, USA
marcelo@rooftop.com

Abstract

We present the source-tree adaptive routing (STAR) protocol and
analyze its performance in wireless networks with broadcast radio
links. Routers in STAR communicate to its neighbors their source
routing trees either incrementally or in atomic updates. Source
routing trees are specified by stating the link parameters of each
link belonging to the paths used to reach every destination. Hence,
a router disseminates link-state updates to its neighbors for only
those links along paths used to reach destinations. Simulation re-
sults show that STAR is an order of magnitude more efficient than
any topology-broadcast protocol, and four times more efficient than
ALP, which was the most efficient table-driven routing protocol based
on partial link-state information reported to date. The results also
show that STAR is even more efficient than the Dynamic Source
Routing (DSR) protocol, which has been shown to be one of the
best performing on-demand routing protocols.

1. Introduction

Multi-hop packet-radio networks, or ad hoc networks, consist of
mobile hosts interconnected by routers that can also move. Rout-
ing algorithms for ad hoc networks can be categorized according to
the way in which routers obtain routing information, and according
to the type of information they use to compute preferred paths. In
terms of the way in which routers obtain information, routing pro-
tocols have been classified as table-driven and on-demand. In terms
of the type of information used by routing protocols, routing proto-
cols can be classified into link-state protocols and distance-vector
protocols. Routers running a link-state protocol use topology infor-
mation to make routing decisions; routers running a distance-vector
protocol use distances and, in some cases, path information, to des-
tinations to make routing decisions.

In an on-demand routing protocol, routers maintain path infor-
mation for only those destinations that they need to contact as a
source or relay of information. The basic approach consists of
allowing a router that does not know how to reach a destination
to send a flood-search message to obtain the path information it
needs. The first routing protocol of this type was proposed to es-
tablish virtual circuits in the MSE network [25], and there are sev-
eral more recent examples of this approach (e.g., AODV [2], ABR

�This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under grant F30602-97-2-0338.

[1], DSR [10, 7], TORA [24], SSA [19], ZRP [26]). All of the on-
demand routing protocols reported to date are based on distances
to destinations, and there have been no on-demand link-state pro-
posals to date. On-demand routing protocols differ on the specific
mechanisms used to disseminate flood-search packets and their re-
sponses, cache the information heard from other nodes’ searches,
determine the cost of a link, and determine the existence of a neigh-
bor.

In a table-driven algorithm, each router maintains path infor-
mation for each known destination in the network and updates its
routing-table entries as needed. Examples of table-driven algo-
rithms based on distance vectors are the routing protocol of the
DARPA packet-radio network [11], DSDV [3], WRP [21], WIRP
[15], and least-resistance routing protocols [17]. Prior table-driven
approaches to link-state routing in ad hoc networks are based on
topology broadcast. However, disseminating complete link-state
information to all routers incurs excessive communication overhead
in an ad-hoc network because of the dynamics of the network and
the small bandwidth available. Accordingly, all link-state routing
approaches for ad hoc networks have been based on hierarchical
routing schemes [20, 6, 18]. To date, the debate on whether a
table-driven or an on-demand routing approach is best for ad hoc
networks has assumed that table-driven routing necessarily has to
provide shortest paths, when in fact on-demand routing protocols
cannot ensure optimum or shortest paths.

We present the source-tree adaptive routing (STAR) protocol as
an approach to obtaining efficient routing in ad hoc networks using
link-state information. The key contributions of this paper consist
of: (a) introducing the most bandwidth-efficient table-driven rout-
ing protocol for wireless networks to date, and (b) showing how
a table-driven routing protocol can be more efficient than an on-
demand routing protocol by exploiting link-state information and
allowing paths taken to destinations to deviate from the optimum in
order to save bandwidth.

In STAR, a router sends updates to its neighbors regarding the
links in its preferred paths to destinations. The links along the pre-
ferred paths from a source to each desired destination constitute
a source treethat implicitly specifies the complete paths from the
source to each destination. Each router computes its source tree
based on information about adjacent links and the source trees re-
ported by its neighbors, and reports changes to its source tree to
all its neighbors incrementally or atomically. The aggregation of
adjacent links and source trees reported by neighbors constitutes
the partial topology known by a router. Unlike any of the hierar-
chical link-state routing schemes proposed to date for packet-radio
networks [18], STAR does not require backbones, the dissemina-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Source-Tree Routing in Wireless Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

tion of complete cluster topology within a cluster, or the dissem-
ination of the complete inter-cluster connectivity among clusters.
Furthermore, STAR can be used with distributed hierarchical rout-
ing schemes proposed in the past for both distance-vector or link-
state routing [16, 18, 22, 9].

Prior proposals for link-state routing using partial link-state data
without clusters [13, 14] require routers to explicitly inform their
neighbors which links they use and which links they stop using.
In contrast, because STAR sends only changes to the structure of
source trees, and because each destination has a single predecessor
in a source tree, a router needs to send only updates for those links
that are part of the tree and a single update entry for the root of
any subtree of the source tree that becomes unreachable due to fail-
ures. Routers receiving a STAR update can infer correctly all the
links that the sender has stopped using, without the need for explicit
delete updates.

Section 2 introduces the network model assumed throughout
the rest of the paper. Section 3 describes two different approaches
that can be used to update routing information in wireless networks:
the optimum routing approach (ORA) and the least-overhead rout-
ing approach (LORA), and elicit the reasons why STAR is the first
table-driven routing protocol that can adopt LORA. Section 4 de-
scribes STAR and how it supports ORA and LORA. Section 5 com-
pares STAR’s performance against the performance of other table-
driven and on-demand routing protocols. The simulation results
show that STAR is four times more bandwidth-efficient than the
best-performing link-state routing protocol previously proposed, an
order of magnitude more bandwidth-efficient than topology broad-
casting, and more bandwidth-efficient than DSR, which is a very
efficient on-demand routing protocol [10].

2. Network Model

In STAR, routers maintain a partial topology map of their network.
In this paper we focus on flat topologies only, i.e., there is no ag-
gregation of topology information into areas or clusters.

To describe STAR, the topology of a network is modeled as a di-
rected graphG = (V;E), whereV is the set of nodes andE is the
set of edges connecting the nodes. Each node has a unique identifier
and represents a router with input and output queues of unlimited
capacity updated according to a FIFO policy. In a wireless network,
a node can have connectivity with multiple nodes in a single physi-
cal radio link. For the purpose of routing-table updating, a node A
can consider another node B to be adjacent (we call such a node a
“neighbor”) if there is link-level connectivity between A and B and
A receives update messages from B reliably. Accordingly, we map
a physical broadcast link connecting multiple nodes into multiple
point-to-point bidirectional links defined for these nodes. A func-
tional bidirectional link between two nodes is represented by a pair
of edges, one in each direction and with a cost associated that can
vary in time but is always positive.

All messages, changes in the cost of a link, link failures, and
new-neighbor notifications are processed one at a time within a fi-
nite time and in the order in which they are detected. Routers are as-
sumed to operate correctly, and information is assumed to be stored
without errors.

3. Updating Routes in Wireless Networks

We can distinguish between two main approaches to updating rout-
ing information in the routing protocols that have been designed for
wireless networks: theoptimum routing approach(ORA) and the
least-overhead routing approach(LORA). With ORA, the routing
protocol attempts to update routing tables as quickly as possible to
provide paths that are optimum with respect to a defined metric. In
contrast, with LORA, the routing protocol attempts to provide vi-
able paths, which need not be optimum, causing the least amount
of control traffic.

For the case of ORA, the routing protocol can provide paths that
are optimum with respect to different types of service (TOS), such
as minimum-delay paths or maximum-bandwidth paths. The rest of
this paper, however, focuses on asingleTOS to address the perfor-
mance of routing protocols providing ORA, and uses shortest-path
routing as the single TOS supported for ORA.

On-demand routing protocols such as DSR follow LORA, in
that these protocols attempt to minimize control overhead by: (a)
maintaining path information for only those destinations with which
the router needs to communicate, and (b) using the paths found af-
ter a flood search as long as the paths are valid, even if the paths are
not optimum.

We can view the flood search messages used in on-demand rout-
ing protocols as a form of polling of destinations by the sources. In
contrast, in a table-driven routing protocol, it is the destinations
who poll the sources, meaning that the sources obtain their paths
to destinations as a result of update messages that first originate
at the destinations. What is apparent is that flooding of informa-
tion occurs in both approaches. Interestingly, all the table-driven
routing protocols reported to date for ad-hoc networks adhere to
ORA, and admittedly have been adaptations of routing protocols
developed for wired networks. A consequence of adopting ORA in
table-driven routing within a wireless network is that, if the topol-
ogy of the network changes very frequently, the rate of update mes-
sages increases dramatically, consuming the bandwidth needed for
user data. The two methods used to reduce the update rate in table-
driven routing protocols are clustering and sending updates period-
ically. Clustering is attractive to reduce overhead due to network
size; however, if the affiliations of nodes with clusters change too
often, then clustering itself introduces unwanted overhead. Send-
ing periodic updates after long timeouts reduces overhead, and it is
a technique that has been used since the DARPA packet-radio net-
work was designed [11]; however, control traffic still has to flow
periodically to update routing tables.

Given that both on-demand and table-driven routing protocols
incur flooding of information in one way or another, a table-driven
routing protocol could be designed that incurs similar or less over-
head than on-demand routing protocols by limiting the polling done
by the destinations to be the same or less than the polling done by
the sources in on-demand routing protocols.

There has been no prior description of a table-driven routing
protocol that can truly adhere to LORA, i.e., one that has no need
for periodic updates, uses no clustering, and remains quiet as long
as the paths available at the routers are valid, even if they are not
optimum. The reason why no prior table-driven protocols based
on LORA have been reported is that, with the exception of WIRP
and WRP, prior protocols have used either distances to destinations,
topology maps, or subsets of the topology, to obtain paths to desti-

nations, and none of these types of information permits a router to
discern whether the paths it uses are in conflict with the paths used
by its neighbors. Accordingly, routers must send updates after they
change their routing tables in order to avoid loops, and the best that
can be done is to reduce the control traffic by sending such updates
periodically.

4. STAR Description

4.1. Overview

In STAR, each router reports to its neighbors the characteristics
of every link it uses to reach a destination. The set of links used
by a router in its preferred path to destinations is called thesource
treeof the router. A router knows its adjacent links and the source
trees reported by its neighbors; the aggregation of a router’s adja-
cent links and the source trees reported by its neighbors constitute
a partialtopology graph. The links in the source tree and topology
graph must be adjacent links or links reported by at least one neigh-
bor. The router uses the topology graph to generate its own source
tree. Each router derives a routing table specifying the successor to
each destination by running a localroute-selection algorithmon its
source tree.

Under LORA, a router running STAR sends updates on its source
tree to its neighbors only when it loses all paths to one ore more des-
tinations, when it detects a new destination, when it determines that
local changes to its source tree can potentially create long term rout-
ing loops, or when the change in the cost of a path to a destination
exceeds a threshold. Because each router communicates its source
tree to its neighbors, the deletion of a link no longer used to reach
a destination is implicit with the addition of the new link used to
reach the destination and need not be sent explicitly as an update; a
router makes explicit reference to a failed link only when the dele-
tion of a link causes the router to have no paths to one or more
destinations, in which case the router cannot provide new links to
make the deletion of the failed link implicit.

The basic update unit used in STAR to communicate changes
to source trees is the link-state update (LSU). An LSU reports the
characteristics of a link; an update message contains one or more
LSUs. For a link between routeru and router or destinationv,
routeru is called thehead nodeof the link in the direction from
u to v. The head node of a link is the only router that can report
changes in the parameters of that link. LSUs are validated using
time stamps, and each router erases a link from its topology graph
if the link is not present in the source trees of any of its neighbors.

Figures 1 and 2 specify the main procedures of STAR (for both
LORA and ORA) used to update the routing table and the link-state
database at a routeri. For simplicity, the specification presented in
these figures assumes the existence of an underlying protocol that:
(a) assures that a router detects within a finite time the existence of
a new neighbor and the loss of connectivity with a neighbor, and
(b) delivers update messages reliably among neighbors.

4.2. Information Stored and Exchanged

We assume in the rest of the paper that a single parameter is
used to characterize a link in one of its directions, which we will
call the cost of the directed link. Furthermore, although any type of
local route selection algorithm can be used in STAR, we describe

STAR assuming that Dijkstra’s shortest-path first (SPF) algorithm
is used at each router to compute preferred paths.

An LSU for a link(u; v) in an update message is a tuple(u; v; l; t)
reporting the characteristics of the link, wherel represents the cost
of the link andt is the time stamp assigned to the LSU.

A routeri maintains a topology graphTGi, a source treeSTi, a
routing table, the set of neighborsNi, the source treesST i

x reported
by each neighborx 2 Ni, the topology graphsTGi

x reported by
each neighborx 2 Ni, and the system timeTi used to generate
time stamps for LSUs. The record entry for a link(u; v) in the
topology graph of routeri is denotedTGi(u; v) and is defined by
the tuple(u; v; l; t; del), and an attributep in the tuple is denoted
by TGi(u; v):p. The same notation applies to a link(u; v) in STi,
ST i

x, andTGi

x. TGi(u; v):del is set to TRUE if the link is not in
the source tree of any neighbor.

A vertex v in TGi is denotedTGi(v). It contains a tuple
(d; pred; suc; d0; d00; suc0; nbr)whose values are used on the com-
putation of the source tree.TGi(v):d reports the distance of the
pathi; v,TGi(v):pred isv’s predecessor ini; v,TGi(v):suc

is the next hop along the path towardsv, suc0 holds the address of
the previous hop towardsv, d0 corresponds to the previous distance
to v reported bysuc0, d00 is the cost of the pathi ; v the last
time the cost of the path changed by�, andnbr is a flag used to
determine if an update message must be generated when the dis-
tance reported by the new successor towardsv increases. The same
notation applies to a vertexv in STi, ST i

x, andTGi

x.
The source treeSTi is a subset ofTGi. The routing table con-

tains record entries for destinations inSTi, each entry consists of
the destination address, the cost of the path to the destination, and
the address of the next-hop towards the destination.

The topology graphTGi

x contains the links inST i

x and the
links reported by neighborx in a message being processed by router
i, after processing the messageTGi

x � ST i

x.
A routeri running LORA also maintains the last reported source

treeSTi0.
The cost of a failed link is considered to be infinity. The way

in which costs are assigned to links is beyond the scope of this
specification. As an example, the cost of a link could simply be the
number of hops, or the addition of the latency over the link plus
some constant bias.

We refer to an LSU that has a cost infinity as a RESET,TGi

i �

TGi, andST i

i � STi.

4.3. Validating Updates

STAR uses time stamps to validate LSUs. A router either main-
tains a clock that does not reset when the router stops operating, or
asks its neighbors for the oldest known time stamp after it initial-
izes or reboots. Hence, for practical purposes, a time stamp based
on 32 bits can be viewed as a monotonically increasing number.

A router receiving an LSU accepts the LSU as valid if the re-
ceived LSU has a larger time stamp than the time stamp of the LSU
stored from the same source, or if there is no entry for the link in the
topology graph and the LSU is not reporting an infinite cost. Link-
state information for failed links are the only LSUs erased from the
topology graph due to aging (which is in the order of an hour after
having processed the LSU). LSUs for operational links are erased
from the topology graph when the links are erased from the source
tree of all the neighbors.

NodeUp()
description

Node i initializes itself
f
TGi ;;
STi ;;
ST 0

i
 ;;

Ni ;;
Mi FALSE;
NSi FALSE;
g

NeighborUp(k)
description

Neighbor protocol reports connectivity
to neighbor k
f
Ni Ni [fkg;

TGi
k
 ;;

STi
k
 ;;

sendST TRUE;

if (LORA andk 2 TGi andTGi(k):pred 6= null)
f
NSi TRUE;
sendST FALSE;
g

Update(i; (i; k; li
k
; Ti));

if (sendST)
f
MSGi ;;

for each (link (u; v) 2 STi)
MSGi MSGi [f(u; v; TGi(u; v):l;

TGi(u; v):t)g;
g

Send();
g

NeighborDown(k)
description

Neighbor protocol reports link
failure to neighbor k
f
Ni Ni � fkg;

TGi
k
 ;;

STi
k
 ;;

Update(i; (i; k;1; Ti));

Send();
g

LinkCostChange(k)
description

Neighbor protocol reports link
cost change to neighbor k
f

Update(i; (i; k; li
k
; Ti));

Send();
g

Update(k;msg)
description

Process update message msg
sent by router k
f

UpdateTopologyGraph(k;msg);

if (k 6= i)
BuildShortestPathTree(k);

BuildShortestPathTree(i);
UpdateRoutingTable();

if (k 6= i)
Send();

g

UpdateTopologyGraph(k;msg)
description

Update TGi and TGi
k

from LSUs in msg

f
for each (LSU (u; v; l; t) 2 msg)
f

if (l 6=1)
ProcessAddUpdate(k; (u; v; l; t));

else
ProcessVoidUpdate(k; (u; v; l; t));

g
g

ProcessAddUpdate(k; (u; v; l; t))
description

Update topology graphs TGi and TGi
k

from LSU (u; v; l; t)
f

if ((u; v) =2 TGi or t > TGi(u; v):t)
f

if ((u; v) =2 TGi)
TGi TGi [f(u; v; l; t)g;

else
f
TGi(u; v):l l; TGi(u; v):t t;
g
g

if (k 6= i)
f

if (9 (r; s) 2 TGi
k
j r 6= u ands = v)

TGi
k
 TGi

k
� f(r; s)g;

if ((u; v) =2 TGi
k

)

TGi
k
 TGi

k
[f(u; v; l; t)g;

else
f

TGi
k
(u; v):l l; TGi

k
(u; v):t t;

g
g
TGi(u; v):del FALSE;
g

ProcessVoidUpdate(k; (u; v; l; t))
description

Update topology graphs TGi and TGi
k

from

LSU(u; v; l; t) reporting link failure
f

if ((u; v) 2 TGi)
f

if (t > TGi(u; v):t)
f
TGi(u; v):l l; TGi(u; v):t t;
g

if (k 6= i and(u; v) 2 TGi
k

)

f

TGi
k
(u; v):l l; TGi

k
(u; v):t t;

g
TGi(u; v):del FALSE;
g
g

Send()
f

if (MSGi 6= ;)
Broadcast messageMSGi ;

MSGi ;;
g

InitializeSingleSource(k)
f

for each (vertexv 2 TGi
k

)

f

TGi
k
(v):d 1;

TGi
k
(v):pred null;

TGi
k
(v):suc0 TGi

k
(v):suc;

TGi
k
(v):suc null;

TGi
k
(v):nbr null;

g

TGi
k
(k):d 0;

g

BuildShortestPathTree(k)
description

Construct STi
k

f
InitializeSingleSource(k);

Q set of vertices inTGi
k

;

u ExtractMin (Q);
newST ;;

while (u 6= null andTGi
k
(u):d <1)

f

if (TGi
k
(u):pred 6= null andTGi

k
(u):pred =2 newST)

f

(r; s) TGi
k
(u):pred;

newST newST [(r; s);

if (LORA andk = i)
f

if (i > TGi(u):suc)

if (9 x 2 Ni j TG
i
x(u):suc = i andTGi(u):suc = x)

Mi TRUE; // LORA-3 rule

if (TGi(u):suc 6= TGi(u):suc
0 andTGi(u):suc > i)

Mi TRUE; // LORA-3 rule
if (6 9 (x; y) 2 ST 0

i
j y = u)

Mi TRUE; // LORA-1 rule

if (TGi(u):d
00 6= 1 and j TGi(u):d � TGi(u):d

00 j > �)
f
Mi TRUE; // LORA-2 rule
TGi(u):d

00 TGi(u):d;
g
w TGi(u):suc;
if (w 6= i)
path w u cost TGi(u):d � TGi(i; w):l;

else
path w u cost 0;

if (path w u cost > TGi(u):d
0)

f
if (r = w orTGi(r):nbr = i)
TGi(s):nbr i;

if (TGi(s):nbr 6= i)
Mi TRUE; // LORA-3 rule

g

TGi(u):d
0 path w u cost;

TGi(u):suc
0 TGi(u):suc;

g
g

for each (vertexv 2 adjacency list ofTGi
k
(u)

j TGi
k
(u; v):l 6=1 and NOTTGi(u; v):del)

f
if (k = i)
f

if (u = i)
suc i;

else if(TGi(u):suc = i)
suc fx j x 2 Ni andx = ug;

else
suc TGi(u):suc;

g
else
f

if (u = k)
if (v = i) suc i;
else suc k;

else
suc TGi(u):suc;

g
RelaxEdge(k;u; v;Q; suc);
g
if (Q 6= ;) u ExtractMin (Q);
else u null;
g

UpdateNeighborTree(k; newST);

if (k = i)
f

if (LORA andMi)
f

ReportChanges(ST 0
i
; newST);

ST 0
i
 newST ; NSi FALSE;

g
else if(ORA)

ReportChanges(STi; newST);
if (ORA or (LORA andMi))

for each (link (u; v) 2 TGi j TGi(u; v):del = TRUE)
TGi TGi � f(u; v)g;

Mi FALSE;
g

STi
k
 newST ; newST ;;

g

Figure 1. STAR Specification

We note that, because LSUs for operational links never age out,
there is no need for the head node of a link to send periodic LSUs to
update the time stamp of the link. This is very important, because
it means that STAR does not need to disseminate LSUs for a given
link periodically to each router that uses the link in its source tree.

This is in contrast to other routing protocols based on sequence
numbers or time stamps, together with aging, which age out LSUs
and must, therefore, flood LSUs periodically.

RelaxEdge(k; u; v; Q; suc)
f

if (TGi
k
(v):d > TGi

k
(u):d + TGi

k
(u; v):l or

(k = i andTGi
k
(v):d = TGi

k
(u):d + TGi

k
(u; v):l and

(u; v) 2 STi))
f

TGi
k
(v):d TGi

k
(u):d + TGi

k
(u; v):l;

TGi
k
(v):pred TGi

k
(u; v);

TGi
k
(v):suc suc;

if (LORA andk = i andTGi(v):suc
0 = null)

f
// v was an unknown destination
TGi(v):suc

0 suc;
TGi(v):d

00 TGi(v):d;

if (suc 6= i)
TGi(v):d

0 TGi(v):d � TGi(i; suc):l;
else
TGi(v):d

0 0;
g

Insert(Q; v);
g
g

ReportChanges(oldST; newST)
description

Generate LSUs for new links in the router’s source tree
f

for each (link (u; v) 2 newST)
if ((u; v) =2 oldST ornewST(u; v):t 6= oldST(u; v):t orNSi)
MSGi MSGi [f(u; v; TGi(u; v):l; TGi(u; v):t)g;

g

UpdateNeighborTree(k; newST)
description

Delete links from TGi
k

and report failed links

f

for each (link (u; v) 2 STi
k

)

f
if ((u; v) =2 newST)
f

// k Has removed (u; v) from its source tree

if (LORA andTGi
k
(v):pred = null)

f
// LORA-2 rule: k has no path to destination v
Mi TRUE;

if (k = i)
for each (link (r; s) 2 TGi j s = v)

if (TGi(r; s):l =1)
MSGi MSGi [f(r; s; TGi(r; s):l; TGi(r; s):t)g;

g

if (ORA andk = i and (u = i orTGi(v):pred = null))
f

// i has no path to destination v or i is the head node

if (TGi(v):pred = null)
for each (link (r; s) 2 TGi j s = v)

if (TGi(r; s):l =1)
MSGi MSGi [f(r; s; TGi(r; s):l; TGi(r; s):t)g;

else if(TGi(u; v):l =1)
// i Needs to report failed link
MSGi MSGi [f(u; v; TGi(u; v):l; TGi(u; v):t)g;

g

if (LORA andk = i andTGi(v):pred = null)
f

TGi(v):d
0 1;

TGi(v):suc
0 null;

g

if (NOT (k = i andu = i))
f

if ((u; v) 2 TGi
k

)

TGi
k
 TGi

k
� f(u; v)g;

if (TGi(u; v):l 6=1 and 6 9 x 2 Ni j (u; v) 2 TGix)
TGi(u; v):del TRUE;

g
g
g
g

Figure 2. STAR Specification (cont.)

4.4. Exchanging Update Messages

How update messages are exchanged depends on the routing
approach used (ORA or LORA) and the services provided by the
link layer. In this section, we assume that the link layer provides
collision-free broadcasts.

For ORA to be supported in STAR, the only rule needed for

sending update messages consists of a router sending an update
message every time its source tree changes or when a neighbor
sends an outdated LSU for a link known to the receiving router.

In an on-demand routing protocol, a router can keep using a
path found as long as the path leads to the destination, even if the
path does not have optimum cost. A similar approach can be used
in STAR, because each router has a complete path to every destina-
tion as part of its source tree. To support LORA, routeri running
STAR reports updates to its source trees in the event of unreachable
destinations, new destinations, the possibility of permanent rout-
ing loops, and cost of paths exceeding a given threshold. Routeri

accomplishes this by comparing its source tree against the source
trees it has received from its neighbors after any input event, and
by sending the updates to its source tree according to the following
three rules.

LORA-1: Routeri sends a source-tree update when it finds a new
destination, or any of its neighbors reports a new destination.

Whenever a router hears from a new neighbor that is also a new
destination, it sends an update message that includes the new LSUs
in its source tree. Obviously, when a router is first initialized or
after a reboot, the router itself is a new destination and should send
an update message to its neighbors. Link-level support should be
used for the router to know its neighbors within a short time, and
then report its links to those neighbors with LSUs sent in an update
message. Else, a simple way to implement an initialization action
consists of requiring the router to listen for some time for neighbor
traffic, so that it can detect the existence of links to neighbors.

LORA-2: Routeri sends a source-tree update when the change in
the cost of the path to at least one destination exceeds a threshold
� for routeri or any of its neighbors.

In this paper, we assume� = 1, i.e., routers force source-
tree updates when destinations become unreachable. When a router
processes an input event (e.g., a link fails, an update message is re-
ceived) that causesall its paths through all its neighbors to one or
more destination to be severed, the router sends an update message
that includes an LSU specifying an infinite cost for the link con-
necting to the head of each subtree of the source tree that becomes
unreachable. The update message does not have to include an LSU
for each node in an unreachable subtree, because a neighbor receiv-
ing the update message has the sending node’s source tree and can
therefore infer that all nodes below the root of the subtree are also
unreachable, unless LSUs are sent for new links used to reach some
of the nodes in the subtree.

LORA-3: Routeri sends a source-tree update when:

1. A path implied in the source tree of routeri leads to a loop.

2. The new successor chosen to a given destination has an ad-
dress larger than the address of routeri.

3. The reported distance from the new chosen successorn to
a destinationj is longer than the reported distance from the
previous successor to the same destination. However, if the
link (i; j) fails andn is a neighbor ofj, no update message
is needed regardingj or any destination whose path fromi
involvesj.

Each time a router processes an update message from a neigh-
bor, it updates that neighbor’s source tree and traverses that tree to
determine for which destinations its neighbor uses the router pro-
cessing the update as a relay in its preferred paths. The router then
determines if it is using the same neighbor as a relay for any of those
destinations. A routing loop is detected if the router and neighbor
use each other in the path to any destination, in which case the loop
must be broken and the router must send an update message with
the corresponding changes.

To explain the need for the second part of LORA-3, we observe
that, in any routing loop among routers with unique addresses, one
of the routers must have the smallest address in the loop; therefore,
if a router is forced to send an update message when it chooses a
successor whose address is larger than its own, then it is not possi-
ble for all routers in a routing loop to remain quiet after choosing
one another, because at least one of them is forced to send an up-
date message, which causes the loop to break when routers update
their source trees.

The last part of LORA-3 is needed when link costs can assume
different values in different directions, in which case the second
part of LORA-3 may not suffice to break loops because the node
with the smallest address in the loop may not have to change suc-
cessors when the loop is formed. The following example illustrates
this scenario.

Consider the six-node wireless network shown in Figure 3 and
assume that the third part of LORA-3 is not in effect at the routers
running STAR. In this example, nodes are given identifiers that are
lexicographically ordered, i.e.,a is the smallest identifier andf is
the largest identifier in the graph. All links and nodes are assumed
to have the same propagation delays, and all the links but links
(a; b) and(b; c) have unit cost. Figures 3(b) through 3(d) show the
source trees according to STAR at the routers indicated with filled
circles for the network topology depicted in Figure 3(a). Arrow-
heads on solid lines indicate the direction of the links stored in the
router’s source tree. Figure 3(e) showsc’s new source tree after
processing the failure of link(c; d); we note thatc does not gener-
ate an update message, becausec > b by assumption. Suppose link
(b; e) fails immediately after the failure of(c; d), nodeb computes
its new source tree shown in Figure 3(f) without reporting changes
to it becausea is its new successor to destinationsd, e, andf , and
a < b. A permanent loop forms among nodesa, b, andc. Fig-
ure 4 depicts the sequence of events triggered by the execution of
the third part of LORA-3 in the same example introduced in Fig-
ures 3, after the failures of links(c; d) and(b; e). The figure shows
the LSUs generated by the node with filled circle transmitted in an
update message to the neighbors, and shows such LSUs in paren-
theses. The third element in an LSU corresponds to the cost of the
link (a RESET has costinfinity). Unlike in the previous example,
nodec transmits an update message after processing the failure of
link (c; d) because of the third part of LORA-3; the distance from
the new successorb to d andf is longer than from the previous
successord. When link(b; e) fails, nodeb realizes that the destina-
tionsd, e, andf are unreachable and generates an update message
reporting the failure of the link connecting to the head of the subtree
of the source tree that becomes unreachable. The update message
from b triggers the update messages that allow nodesa, b, andc to
realize that there are no paths tod, e, andf . A similar sequence of
events takes place at the other side of the network partition.

The example shown in Figure 5 illustrates the scenario in which

a

b

c

f

d

e

51

1
5

(a)

a

b

c

f

d

e

(b)

a

b

c

f

d

e

(c)

a

b

c

f

d

e

(d)

a

b

c

f

d

e

(e)

a

b

c

f

d

e

(f)

Figure 3. An example of a six node wireless network with

routers running STAR without the third part of LORA-3

being in effect.

a

b

c

f

d

e

51

1
5

(a)

a

b

c

f

d

e

(b, e, 1) (e, d, 1) (e, f, 1)

(b)

a

b

c

f

d

e

(b, e, 1) (e, d, 1) (e, f, 1)

(c)

a

b

c

e

(b, e, infinity)

(d)

(b, e, infinity)

 a

b

c

(e)

a

b

c

(b, e, infinity)

(f)

Figure 4. Example of a six-node wireless network with

routers running STAR with the third part of LORA-3

being in effect.

a

b

c

f

d

e

1 5

10

(a)

a

b

c

f

d

e

(b)

Figure 5. The third part of LORA-3 not always triggers

the generation of an update message: (a) network topol-

ogy, and (b) the new source tree of nodec after processing

the failure of link (c; b).

a router that chooses a new successor to a destination with a larger
distance to it does not need to send an update message. Figure 5(b)
shows the new source tree of nodec after the failure of link(c; b).
In this case,c does not need to send an update message because
the parent node of the subtree headed byb is a neighbor ofc and
therefore no permanent loop can be formed.

To ensure that the above rules work with incremental updates

specifying only changes to a source tree, a router must remember
the source tree that was last notified to its neighbors. If any of
LORA-1 to LORA-3 are satisfied, the router must do one of two
things:

� If the new source tree includes new neighbors than those
present in the source tree that was last updated, then the router
must send its entire source tree in its update, so that new
neighbors learn about all the destinations the router knows.

� If the two source trees imply the same neighbors, the router
sends only the updates needed to obtain the new tree from the
old one.

To ensure that STAR stops sending update messages, a sim-
ple rule can be used to determine which router must stop using its
neighbor as a relay, such a rule can be, for example, “the router with
the smaller address must change its path.”

The above rules are sufficient to ensure that every router obtains
loop-less paths to all known destinations, without the routers having
to send updates periodically. In addition to the ability for a router
to detect loops in STAR, the two key features that enable STAR to
adopt LORA are: (a) validating LSUs without the need of periodic
updates, and (b) the ability to either listen to neighbors’ packets
or use a neighbor protocol at the link layer to determine who the
neighbors of a router are.

4.5 Impact of The Link Layer in LORA

The rules for update-message exchange stated in the previous
section assume that an update message is sent reliably to all the
neighbors of a router. If the link layer provides efficient reliable
broadcast of network-level packets, then STAR can rely on send-
ing an update message only once to all neighbors, with the update
message specifying only incremental changes to the router’s source
tree. The link layer will retransmit the packet as needed to reach
all neighbors, so that it can guarantee that a neighbor receives the
packet unless the link is broke. An alternative way to provide a re-
liable exchange of update messages consists of providing collision-
free broadcasts of update messages at the medium access control
(MAC) layer and implementing the retransmission strategy for up-
date messages as part of STAR itself.

A reliable broadcast service at the link layer can be implemented
very efficiently at the link layer or in STAR itself if the MAC proto-
col used guarantees collision-free transmissions of broadcast pack-
ets. A typical example of A MAC protocol that can support collision-
free broadcasts is TDMA, and there are several recent proposals
that need not rely on static assignments of resources (e.g., FPRP [4],
CARTS [27]).

Unfortunately, reliable broadcasting from a node to all its neigh-
bors is not supported in the collision-avoidance MAC protocols that
have been proposed [5, 12, 8] or implemented in commercial prod-
ucts for ad hoc networks operating in ISM bands. Furthermore, any
link-level or network-level strategy for reliable exchange of broad-
cast update messages over a contention-based MAC protocol will
require substantial retransmissions under high-load conditions and
rapid changes to the connectivity of nodes. Therefore, if the un-
derlying MAC protocol does not provide collision-free broadcasts,
then STAR (and any table-driven routing protocol for that matter) is
better off relying on the approach adopted in the past in the DARPA

packet-radio network, whereby a router broadcasts unreliably its
update messages to its neighbors, and each update message con-
tains the entire source tree. For STAR to operate correctly with this
approach under LORA, routers must prevent the case in which per-
manent loops are created because an update message is not received
by a neighbor due to channel errors or hidden-terminal interference.

When the routers transmit updates over a MAC protocol that
does not provide collision-free broadcasting, the following addi-
tional mechanisms are needed in STAR: (a) the data packets must
record the route traversed, and (b) four additional rules are used to
send an update messages. These added rules are used to provide
persistence in the exchange of updates, probe neighbor routers for
updates when paths to a destination are not known, and break loops
detected by the traversal of data packets.

LORA-4: Routeri sends its update message as a reliable unicast to
the neighbor that makes routeri send its update, and all neighbors
of i process the update message.

LORA-5: A router sends periodic updates in intervals of 60 sec-
onds while at least one of its neighbors does not report having a
path to a destination known to the router; otherwise, periodic up-
dates are transmitted in intervals of 600 seconds or longer.

LORA-6: When routeri has a data packet to send to a destina-
tion j for which it has no paths, it sends an update message to its
neighbors reporting the absence of a path toj. This message acts as
a query, because any neighbor with a path toj receiving the mes-
sage will generate an update message and send it reliably to router
i. While routeri has no path toj, it retransmits its update message
in intervals of 600 milliseconds, 6 seconds, and 60 seconds, and
then backs off to periodic updates transmitted in intervals of 600
seconds or longer.

LORA-7: Routeri receives a data packet to destinationj and one
of the routers in the traversed path is ini’s path to the destination,
the data packet is discarded and a ROUTE-REPAIR update mes-
sage is generated to break the loop. A ROUTE-REPAIR contains
the complete source tree of the sender’s router and theroute repair
path, and is transmitted reliably to the router in the head of the route
repair path. Theroute repair pathcorresponds to the pathi ; x,
wherex is the last router in the data packet’s traversed path that
is first found in the pathi ; j 2 STi. When a router receives
a ROUTE-REPAIR update it removes itself from the route repair
path and transmits a ROUTE-REPAIR with its source tree to the
head of the route repair path. When a router detects a loop it will
only transmit a ROUTE-REPAIR update to neighbork if 30 sec-
onds have elapsed since the last time a ROUTE-REPAIR was sent
to k.

5. Performance Evaluation

STAR has the same communication, storage, and time complex-
ity than ALP [14] and efficient table-driven distance-vector rout-
ing protocols proposed to date (e.g., WRP [21]). However, worst-
case performance is not truly indicative of STAR’s performance;
accordingly, we ran a number of simulation experiments to com-
pare STAR’s average performance against the performance of table-
driven and on-demand routing protocols. The simulation study was

conducted in the C++ Protocol Toolkit (CPT) simulator environ-
ment, in which the protocol stack implementation in the simulation
runs the very same code used in a real embedded wireless router
and IP (Internet Protocol) is used as the network protocol.

The link layer implements a medium access control (MAC) pro-
tocol similar to the IEEE 802.11 standard and the physical layer is
based on a direct sequence spread spectrum radio with a link band-
width of 1 Mbit/sec. The neighbor protocol is configured to report
loss of connectivity to a neighbor if the probation of the link fails
in a period of about 10 seconds.

STAR based on ORA was compared against two other table-
driven routing protocols, and STAR based on LORA was compared
with an on-demand routing protocol. The simulation experiments
use 20 nodes forming an ad-hoc network, moving over a flat space
(5000m x 7000m), and initially randomly distributed at a density
of one node per square kilometer. Nodes move in the simulation
according to the “random waypoint” model [10]. Each node begins
the simulation by remaining stationary forpause time seconds. It
then selects a random destination and moves to that destination at a
speed of 20 meters per second for a period of time uniformly dis-
tributed between 5 and 11 seconds. Upon reaching the destination,
the node pauses again forpause time seconds, selects another des-
tination, and proceeds there as previously described, repeating this
behavior for the duration of the simulation.

5.1. Comparison with Table-Driven Protocols

We chose to compare STAR against the traditional link-state
approach and ALP [14]. The traditional link-state approach (de-
noted by TOB for topology broadcast) corresponds to the flooding
of link states in a network, or within clusters coupled with flood-
ing of inter-cluster connectivity among clusters. ALP is a routing
protocol based on partial link-state information that we have pre-
viously shown to outperform prior table-driven distance-vector and
link-state protocols. ALP’s efficiency is derived from the fact that
a router running ALP does not report to its neighbors the deletion
of a link from its preferred paths if the cost of the link has not in-
creased; however, the router may be forced to report the deletion of
such a link subsequently if the cost of the link increases or the link
becomes unreachable.

For these simulations STAR uses ORA, because both ALP and
TOB attempt to provide paths that are optimum with respect to a
defined metric. The three protocols rely on the reliable delivery of
broadcast packets by the link layer. We ran our simulations with
movement patterns generated for five different pause times: 0, 30,
45, 60, and 90 seconds. A pause time of 0 seconds corresponds
to continuous motion. The simulation time in all the simulation
scenarios is of 900 seconds.

Table 1 summarizes the behavior of the three protocols accord-
ing to thepause time of the nodes. The table shows the num-
ber of link connectivity changes and the total number of update
packets generated by the routing protocols; ALP generates on aver-
age more than four times the number of update packets generated
by STAR, and TOB generates more than 10 times the number of
packets generated by STAR. The performance of ALP and TOB for
pause time 0 could not be assessed because the amount of update
packets generated by the routers lead to congestion at the link layer.

Because STAR can be used in combination with any cluster-
ing scheme proposed in the past for packet-radio networks, it is

clear from this study that STAR should be used instead of ALP and
topology broadcast for the provision of QoS routing in packet radio
networks, given that any overhead traffic associated with clustering
would be equivalent for STAR, ALP, and topology broadcast.

Pause Connectivity Packets Generated
Time Changes STAR ALP TOB

0 1090 2542 – –
30 154 411 1765 5577
45 102 262 1304 3908
60 90 239 1144 2502
90 50 138 623 1811

Table 1. Average performance of STAR, ALP, and TOB.

5.2. Comparison with On-Demand Protocols

We compare STAR using LORA with DSR, because DSR has
been shown to produce the smallest number of update messages
among on-demand routing protocols [10]. Our simulation experi-
ments use the same methodology used recently to evaluate DSR and
other on-demand routing protocols [10]. To run DSR in our sim-
ulation environment, we ported the ns2 code available from [23]
into the CPT simulator. There are only two differences in our
DSR implementation with respect to that used in [10]: (1) in the
embedded wireless routers and simulated protocol stack we used
there is no access to the MAC layer and cannot reschedule pack-
ets already scheduled for transmission over a link (however, this is
the case for all the protocols we simulate); and (2) routers cannot
operate their network interfaces inpromiscuous modebecause the
MAC protocol operates over multiple channels and a router does
not know on which channels its neighbors are transmitting, unless
the packets are meant for the router. Both STAR and DSR can
buffer 20 packets that are awaiting discovery of a route through
the network. Routers running STAR exchange update messages
according to LORA (rules LORA-1 to LORA-7) because the un-
derlying MAC protocol used in the simulations does not provide
collision-free broadcasts.

The overall goal of the simulation experiments was to measure
the ability of the routing protocols to react to changes in the net-
work topology while delivering data packets to their destinations.
To do this, we applied three different communication patterns to the
simulated network, corresponding to 8, 14, and 20 data flows. The
total workload in the three scenarios was the same and consisted of
32 data packets/sec. Each continuous-bit-rate (CBR) source gener-
ated four packets/sec in the scenario with eight flows. Each CBR
source generated 1.6 packets/sec in the scenario with 20 sources. In
the scenario with 14 flows, there were 7 flows from distinct CBR
sources to the same destinationD, generating an aggregate of four
packets/sec and seven flows havingD as the CBR source and the
other seven sources of data as destinations. In each scenario, the
number of unique destinations was eight and the packet size was 64
bytes. The data flows were started at times uniformly distributed
between 20 and 120 seconds (we chose to start the flows after 20
seconds of simulated time to give some time to the Link Layer for
determining the set of nodes that are neighbors of the routers).

The protocol evaluations are based on the simulation of 20 wire-
less nodes with movement patterns generated for five different pause
times: 0, 15, 30, 45, and 60 seconds. The simulated time is of 900
seconds and 1800 seconds for the simulation scenarios with pause
time 0, and 900 seconds for pause times other than 0.

Pause Num. Update Pkts Sent Data Pkts Delivered Data Pkts
Time Flows STAR DSR STAR DSR Generated

8 908 791 15110 14740 24100
0 14 930 1460 15845 10975 25917

20 916 3122 13689 6830 23718
8 615 460 19544 20831 24396

15 14 636 702 23027 23210 25989
20 686 1535 17254 10129 23649
8 559 350 20180 20492 24160

30 14 551 464 23086 23228 25892
20 580 763 19929 18341 23716
8 517 280 21685 22683 24100

45 14 526 2352 23776 20481 25917
20 507 1880 20749 19898 23731
8 522 482 22536 19102 24100

60 14 507 1357 24473 23436 25917
20 493 744 22218 21899 23775

Table 2. Performance of STAR and DSR (900 sec).
Pause Num. Update Pkts Sent Data Pkts Delivered Data Pkts
Time Flows STAR DSR STAR DSR Generated

8 1583 1963 33068 32650 52900
0 14 1582 3249 21085 21830 54716

20 1609 5199 27040 21755 52518

Table 3. Performance of STAR and DSR (1800 sec).
Number Protocol Number of Hops
of Flows 1 2 3 4 5 6

8 STAR 94.0 4.1 1.9
DSR 64.9 31.2 2.6 1.3

14 STAR 76.0 16.4 4.2 3.0 0.4
DSR 64.1 26.9 4.0 4.5 0.5

20 STAR 90.8 6.4 1.6 1.1 0.1
DSR 61.9 32.4 5.1 0.3 0.3

Table 4. Number of hops traversed by data packets (900

sec, pause time 0).

Pause Connectivity
Time Changes

0 1461
15 605
30 424
45 350
60 322

Table 5. Changes in link connectivity (900 sec).

Tables 2 and 3 summarize the behavior of STAR and DSR ac-
cording to the simulated time. The tables show the total number
of update packets transmitted by the nodes and the total number of
data packets delivered to the applications for the three simulated
workloads. Table 4 shows the number of hops traversed by data
packets during 900 seconds of simulated time when nodes are in
continuous motion. The total number of update packets transmit-
ted by routers running STAR varies with the number of changes
in link connectivity while DSR generates control packets based on
both variation of changes in connectivity and the type of workload
inserted in the network. Routers running STAR generated fewer up-
date packets than DSR in most of the simulated scenarios for 900
seconds of simulated time, the difference increased significantly
when the number of flows in the network was 20 (routers running
DSR sent three times more control packets than STAR when nodes
were in continuous motion). Both STAR and DSR were able to de-
liver about the same number of data packets to the applications in
the simulated scenarios with 8 and 14 flows. When we increased
the number of sources of data from 8 to 20 nodes, while inserting
the same number of data packets in the network (32 packets/sec),
we observed that STAR was able to deliver as much as twice the
amount of data packets delivered by DSR when nodes were in con-

tinuous motion. The changes in the network topology during 1800
seconds of simulated time made DSR to send more control packets
than STAR for all workloads.

The MAC layer discards all packets scheduled for transmission
to a neighbor when the link to the neighbor fails, which contributes
to the high loss of data packets seen by nodes. In DSR, each packet
header carries the complete ordered list of routers through which
the packet must pass and may be updated by nodes along the path
towards the destination. The low throughput achieved by DSR for
the case of 20 sources of data is due to the poor choice of source
routes the routers make, leading to a significant increase in the num-
ber of ROUTE ERROR packets generated. Data packets are also
discarded due to lack of routes to the destinations because the net-
work may become temporarily partitioned or because the routing
tables have not converged in the highly dynamic topology we sim-
ulate.

Figures 6(a) through 6(c) show the cumulative distribution of
packet delay experienced by data packets when nodes were in con-
tinuous motion during 900 seconds of simulated time, for a work-
load of 8, 14, and 20 flows respectively. We note that the distribu-
tion of the latency is about the same for both STAR and DSR.

The number of destinations was set to just 40% of the number
of nodes in the network in all the scenarios, which favors DSR by
limiting the number of flood searches needed from each node. For
the cases in which all network nodes receive data, STAR would
introduce no extra overhead while DSR would be severely penal-
ized. It is also important to note the low ratio of update messages
generated by STAR compared to the number of changes in link con-
nectivity (Table 5), when we run the simulations for 1800 seconds
of simulated time there were 2792 changes in link connectivity.

We note that, in cases where routers fail or the network becomes
partitioned for extended time periods, the bandwidth consumed by
STAR is much the same as in scenarios in which no router fails,
because all that must happen is for updates about the failed links to
unreachable destinations to propagate across the network. In con-
trast, DSR and several other on-demand routing protocols would
continue to send flood-search messages trying to reach the failed
destination, which would cause a worst-case bandwidth utilization
for DSR. To illustrate the impact the failure of a single destination
has in DSR we have re-run the simulation scenario with 8 flows
present in the network for 1800 seconds making one of the des-
tinations fail after 900 seconds of simulated time, routers running
STAR sent 1823 update packets while routers running DSR sent
3043 update packets. The existence of a single flow of data to a
destination that was unreachable for 900 seconds made DSR gener-
ate 55% more update packets while STAR experienced an increase
of 15% (see Table 3).

6. Conclusions

We have presented STAR, a link-state protocol that incurs the small-
est communication overhead ofanyprior table-driven routing pro-
tocol, and also incurs on average less overhead than on-demand
routing protocols. STAR accomplishes its bandwidth efficiency
by: (a) disseminating only that link-state data needed for routers
to reach destinations; (b) exploiting that information to ascertain
when update messages must be transmitted to detect new destina-
tions, unreachable destinations, and loops; and (c) allowing paths
to deviate from the ideal optimum while not creating permanent

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(c)

Figure 6. Cumulative distribution of packet delay expe-

rienced by data packets for a workload of (a) 8 flows, (b)

14 flows, and (c) 20 flows (900 sec, pause time 0).

loops. Because STAR can be used with any clustering mechanism
proposed to date, these results clearly indicate that STAR is a very
attractive approach for routing in packet-radio networks. Perhaps
more importantly, the approach we have introduced in STAR for
least-overhead routing opens up many research avenues, such as
developing similar protocols based on distance vectors and deter-
mining how route aggregation and multicasting work under LORA.

7. References

[1] C-K. Toh. Wireless ATM & Ad-Hoc Networks. Kluwer, 1996.
[2] C. Perkins. Ad-Hoc On Demand Distance Vector (AODV) Routing.

draft-ietf-manet-aodv-00.txt, 1997.
[3] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers.Proc. ACM
SIGCOMM 94, October 1994.

[4] C. Zhu and S. Corson. A five phase reservation protocol (FPRP) for
mobile ad-hoc networks.Proc. IEEE INFOCOM 98, 1998.

[5] C.L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions to hidden termi-
nal problems in wireless networks.Proc. ACM SIGCOMM 97, Septem-
ber 1997.

[6] C.V. Ramamoorthy and W. Tsai. An adaptive hierarchical routing al-
gorithm.Proceedings of IEEE COMPSAC ’83, pages 93–104, 1983.

[7] D. Johnson and D. Maltz. Protocols for adaptive wireless and mobile
networking.IEEE Pers. Commun., 3(1), February 1996.

[8] IEEE. P802.11–Unapproved Draft: Wireless LAN Medium Access
Control (MAC) and Physical Specifications. IEEE, 1996.

[9] J. Behrens and J.J. Garcia-Luna-Aceves. Hierarchical routing using
link vectors.Proc. IEEE INFOCOM 98, April 1998.

[10] J. Broch et al. A performance comparison of multi-hop wireless ad hoc
network routing protocols.Proc. ACM MOBICOM 98, October 1998.

[11] J. Jubin and J. Tornow. The DARPA packet radio network protocols.
Proceedings of the IEEE, 75(1), January 1987.

[12] J.J. Garcia-Luna-Aceves and A. Tzamaloukas. Reversing the collision
avoidance handshake in wireless networks.Proc. ACM/IEEE Mobicom
99, August 1999.

[13] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing
based on vectors of link states.IEEE Journal on Selected Areas in
Communications, 13(8), 1995.

[14] J.J. Garcia-Luna-Aceves and M. Spohn. Scalable link-state internet
routing. Proc. IEEE International Conference on Network Protocols
(ICNP 98), October 1998.

[15] J.J. Garcia-Luna-Aceves et al. Wireless internet gateways (WINGS).
Proc. IEEE MILCOM’97, November 1997.

[16] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks:
Performance evaluation and optimization.Computer Networks, 1:155–
174, 1977.

[17] M. Pursley and H.B. Russell. Routing in frequency-hop packet ra-
dio networks with partial-band jamming.IEEE Trans. Commun.,
41(7):1117–1124, 1993.

[18] M. Steenstrup (Ed.).Routing in Communication Networks. Prentice-
Hall, 1995.

[19] R. Dube et al. Signal stability-based adaptive routing (SSA) for ad-hoc
mobile networks.IEEE Pers. Commun., February 1997.

[20] R. Ramanathan and M. Steenstrup. Hierarchically-organized, multihop
mobile wireless networks for quality-of-service support.ACM Mobile
Networks and Applications, 3(1):101–119, 1998.

[21] S. Murthy and J.J. Garcia-Luna-Aceves. An efficient routing protocol
for wireless networks.CM Mobile Networks and Applications Journal,
1996.

[22] S. Murthy and J.J. Garcia-Luna-Aceves. Loop-free internet routing us-
ing hierarchical routing trees.Proc. IEEE INFOCOM 97, April 1997.

[23] The CMU Monarch Project.Wireless and Mobility Extensions to ns-
2 - Snapshot 1.0.0-beta. URL: http://www.monarch.cs.cmu.edu/cmu-
ns.html, 1998.

[24] V. Park and M. Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks.Proc. IEEE INFOCOM 97, April 1997.

[25] V.O.K. Li and R. Chang. Proposed routing algorithms for the us
army mobile subscriber equipment (MSE) network.Proc. IEEE MIL-
COM’86, October 1986.

[26] Z. Haas and M. Pearlman. The zone routing protocol for highly recon-
figurable ad-hoc networks.Proc. ACM SIGCOMM 98, August 1998.

[27] Z. Tang and J.J. Garcia-Luna-Aceves. A protocol for topology-
dependent transmission scheduling.Proc. IEEE Wireless Communica-
tions and Networking Conference 1999 (WCNC 99), September 1999.

